怎么在python中利用字典实现最短路径算法-创新互联

这篇文章将为大家详细讲解有关怎么在python中利用字典实现最短路径算法,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

“专业、务实、高效、创新、把客户的事当成自己的事”是我们每一个人一直以来坚持追求的企业文化。 创新互联公司是您可以信赖的网站建设服务商、专业的互联网服务提供商! 专注于成都做网站、成都网站设计、软件开发、设计服务业务。我们始终坚持以客户需求为导向,结合用户体验与视觉传达,提供有针对性的项目解决方案,提供专业性的建议,创新互联建站将不断地超越自我,追逐市场,引领市场!

然后再贴代码:

_=inf=999999#inf
 
def Dijkstra_all_minpath(start,matrix):
 length=len(matrix)#该图的节点数
 path_array=[]
 temp_array=[]
 path_array.extend(matrix[start])#深复制
 temp_array.extend(matrix[start])#深复制
 temp_array[start] = inf#临时数组会把处理过的节点的值变成inf,表示不是最小权值的节点了
 already_traversal=[start]#start已处理
 path_parent=[start]*length#用于画路径,记录此路径中该节点的父节点
 while(len(already_traversal)'.join(path))#打印路径
  already_traversal.append(i)#该索引已经处理了
  for j in range(length):#这个不用多说了吧
   if j not in already_traversal:
    if (path_array[i]+matrix[i][j])

然后输出:

2: 4->2
3: 4->2->3
0: 4->2->3->0
1: 4->2->1
[60, 60, 10, 30, 0]

主要是这样输出的话比较好看,然后这样算是直接算一个点到所有点的最短路径吧。那么写下字典实现吧

def Dijkstra_all_minpath_for_graph(start,graph):
 inf = 999999 # inf
 length=len(graph)
 path_graph={k:inf for k in graph.keys()}
 already_traversal=set()
 path_graph[start]=0
 min_node=start#初始化最小权值点
 already_traversal.add(min_node)#把找到的最小节点添加进去
 path_parent={k:start for k in graph.keys()}
 while(len(already_traversal)<=length):
  p = min_node
  if p!=start:
   path = []
   path.append(str(p))
   while (path_parent[p] != start):#找该节点的父节点添加到path,直到父节点是start
    path.append(str(path_parent[p]))
    p=path_parent[p]
   path.append(str(start))
   path.reverse()#反序
   print(str(min_node) + ':', '->'.join(path))#打印
  if(len(already_traversal)==length):break
  for k in path_graph.keys():#更新距离
   if k not in already_traversal:
    if k in graph[min_node].keys() and (path_graph[min_node]+graph[min_node][k])

输出:

2: 4->2
3: 4->2->3
0: 4->2->3->0
1: 4->2->1
{0: 60, 1: 60, 2: 10, 3: 30, 4: 0}

关于怎么在python中利用字典实现最短路径算法就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。


分享题目:怎么在python中利用字典实现最短路径算法-创新互联
标题网址:http://abwzjs.com/article/ighie.html