图像白化python函数,Python函数图像

常用的十大python图像处理工具

原文标题:10 Python image manipulation tools.

成都创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、成都网站建设、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的枣阳网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

作者 | Parul Pandey

翻译 | 安其罗乔尔、JimmyHua

今天,在我们的世界里充满了数据,图像成为构成这些数据的重要组成部分。但无论是用于何种用途,这些图像都需要进行处理。图像处理就是分析和处理数字图像的过程,主要旨在提高其质量或从中提取一些信息,然后可以将其用于某种用途。

图像处理中的常见任务包括显示图像,基本操作如裁剪、翻转、旋转等,图像分割,分类和特征提取,图像恢复和图像识别。Python成为这种图像处理任务是一个恰当选择,这是因为它作为一种科学编程语言正在日益普及,并且在其生态系统中免费提供许多最先进的图像处理工具供大家使用。

让我们看一下可以用于图像处理任务中的常用 Python 库有哪些吧。

1.scikit-image

scikit-image是一个开源的Python包,适用于numpy数组。它实现了用于研究,教育和工业应用的算法和实用工具。即使是那些刚接触Python生态系统的人,它也是一个相当简单直接的库。此代码是由活跃的志愿者社区编写的,具有高质量和同行评审的性质。

资源

文档里记录了丰富的例子和实际用例,阅读下面的文档:

用法

该包作为skimage导入,大多数功能都在子模块中找的到。下面列举一些skimage的例子:

图像过滤

使用match_template函数进行模板匹配

你可以通过此处查看图库找到更多示例。

2. Numpy

Numpy是Python编程的核心库之一,并为数组提供支持。图像本质上是包含数据点像素的标准Numpy数组。因此,我们可以通过使用基本的NumPy操作,例如切片、掩膜和花式索引,来修改图像的像素值。可以使用skimage加载图像并使用matplotlib显示图像。

资源

Numpy的官方文档页面提供了完整的资源和文档列表:

用法

使用Numpy来掩膜图像.

3.Scipy

scipy是Python的另一个类似Numpy的核心科学模块,可用于基本的图像操作和处理任务。特别是子模块scipy.ndimage,提供了在n维NumPy数组上操作的函数。该包目前包括线性和非线性滤波,二值形态学,B样条插值和对象测量等功能函数。

资源

有关scipy.ndimage包提供的完整功能列表,请参阅下面的链接:

用法

使用SciPy通过高斯滤波器进行模糊:

4. PIL/ Pillow

PIL( Python图像库 )是Python编程语言的一个免费库,它支持打开、操作和保存许多不同的文件格式的图像。然而, 随着2009年的最后一次发布,它的开发停滞不前。但幸运的是还有有Pillow,一个PIL积极开发的且更容易安装的分支,它能运行在所有主要的操作系统,并支持Python3。这个库包含了基本的图像处理功能,包括点运算、使用一组内置卷积核的滤波和色彩空间的转换。

资源

文档中有安装说明,以及涵盖库的每个模块的示例:

用法

在 Pillow 中使用 ImageFilter 增强图像:

5. OpenCV-Python

OpenCV( 开源计算机视觉库 )是计算机视觉应用中应用最广泛的库之一 。OpenCV-Python 是OpenCV的python版API。OpenCV-Python的优点不只有高效,这源于它的内部组成是用C/C++编写的,而且它还容易编写和部署(因为前端是用Python包装的)。这使得它成为执行计算密集型计算机视觉程序的一个很好的选择。

资源

OpenCV-Python-Guide指南可以让你使用OpenCV-Python更容易:

用法

下面是一个例子,展示了OpenCV-Python使用金字塔方法创建一个名为“Orapple”的新水果图像融合的功能。

6. SimpleCV

SimpleCV 也是一个用于构建计算机视觉应用程序的开源框架。有了它,你就可以访问几个高性能的计算机视觉库,如OpenCV,而且不需要先学习了解位深度、文件格式、颜色空间等。

它的学习曲线大大小于OpenCV,正如它们的口号所说“计算机视觉变得简单”。一些支持SimpleCV的观点有:

即使是初学者也可以编写简单的机器视觉测试摄像机、视频文件、图像和视频流都是可互操作的资源

官方文档非常容易理解,而且有大量的例子和使用案例去学习:

用法

7. Mahotas

Mahotas 是另一个计算机视觉和图像处理的Python库。它包括了传统的图像处理功能例如滤波和形态学操作以及更现代的计算机视觉功能用于特征计算,包括兴趣点检测和局部描述符。该接口是Python语言,适合于快速开发,但是算法是用C语言实现的,并根据速度进行了调优。Mahotas库速度快,代码简洁,甚至具有最小的依赖性。通过原文阅读它们的官方论文以获得更多的了解。

资源

文档包括安装指导,例子,以及一些教程,可以更好的帮助你开始使用mahotas。

用法

Mahotas库依赖于使用简单的代码来完成任务。关于‘Finding Wally’的问题,Mahotas做的很好并且代码量很少。下面是源码:

8. SimpleITK

ITK 或者 Insight Segmentation and Registration Toolkit是一个开源的跨平台系统,为开发人员提供了一套广泛的图像分析软件工具 。其中, SimpleITK是建立在ITK之上的简化层,旨在促进其在快速原型设计、教育、解释语言中的应用。SimpleITK 是一个图像分析工具包,包含大量支持一般过滤操作、图像分割和匹配的组件。SimpleITK本身是用C++写的,但是对于包括Python以内的大部分编程语言都是可用的。

资源

大量的Jupyter Notebooks 表明了SimpleITK在教育和研究领域已经被使用。Notebook展示了用Python和R编程语言使用SimpleITK来进行交互式图像分析。

用法

下面的动画是用SimpleITK和Python创建的刚性CT/MR匹配过程的可视化 。点击此处可查看源码!

9. pgmagick

pgmagick是GraphicsMagick库的一个基于python的包装。 GraphicsMagick图像处理系统有时被称为图像处理的瑞士军刀。它提供了一个具有强大且高效的工具和库集合,支持以88种主要格式(包括重要格式,如DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM和TIFF)读取、写入和操作图像。

资源

有一个专门用于PgMagick的Github库 ,其中包含安装和需求说明。还有关于这个的一个详细的用户指导:

用法

使用pgmagick可以进行的图像处理活动很少,比如:

图像缩放

边缘提取

10. Pycairo

Pycairo是图像处理库cairo的一组Python捆绑。Cairo是一个用于绘制矢量图形的2D图形库。矢量图形很有趣,因为它们在调整大小或转换时不会失去清晰度 。Pycairo是cairo的一组绑定,可用于从Python调用cairo命令。

资源

Pycairo的GitHub库是一个很好的资源,有关于安装和使用的详细说明。还有一个入门指南,其中有一个关于Pycairo的简短教程。

库:指南:用法

使用Pycairo绘制线条、基本形状和径向梯度:

总结

有一些有用且免费的Python图像处理库可以使用,有的是众所周知的,有的可能对你来说是新的,试着多去了解它们。

python处理图片数据?

生成一张纯色的图片

先设置图片的颜色,接着利用Image模块的new方法新生成一张图片,png格式的图片需要设置成rgba,类似的还有rgb,L(灰度图等),尺寸设定为640,480,这个可以根据自己的情况设定,颜色同样如此。

批量生成图片

上面生成了一张图片,那要生成十张图片呢,这种步骤一样,只是颜色改变的,利用循环就可以解决。首先创建一个颜色列表,把要生成的图片颜色放进去。接着循环获取不同的颜色,保存的时候利用字符串拼接的方法改变图片的名字。

本地生成的图片

封装成函数

前面的方法已经可以批量生成图片了,为了通用性强一点,我们可以封装成函数,把哪些可以改变的参数单独抽离出来。尺寸也同样,使用的时候,可以根据自己的需要定义颜色列表和尺寸。当然还有加一些提示用语和报错兼容性,这里就不讲了。

本地生成的图片

怎样使用Python图像处理

Python图像处理是一种简单易学,功能强大的解释型编程语言,它有简洁明了的语法,高效率的高层数据结构,能够简单而有效地实现面向对象编程,下文进行对Python图像处理进行说明。

当然,首先要感谢“恋花蝶”,是他的文章“用Python图像处理 ” 帮我坚定了用Python和PIL解决问题的想法,对于PIL的一些介绍和基本操作,可以看看这篇文章。我这里主要是介绍点我在使用过程中的经验。

PIL可以对图像的颜色进行转换,并支持诸如24位彩色、8位灰度图和二值图等模式,简单的转换可以通过Image.convert(mode)函数完 成,其中mode表示输出的颜色模式。例如''L''表示灰度,''1''表示二值图模式等。

但是利用convert函数将灰度图转换为二值图时,是采用固定的阈 值127来实现的,即灰度高于127的像素值为1,而灰度低于127的像素值为0。为了能够通过自定义的阈值实现灰度图到二值图的转换,就要用到 Image.point函数。

深度剖析Python语法功能

深度说明Python应用程序特点

对Python数据库进行学习研究

Python开发人员对Python经验之谈

对Python动态类型语言解析

Image.point函数有多种形式,这里只讨论Image.point(table, mode),利用该函数可以通过查表的方式实现像素颜色的模式转换。其中table为颜色转换过程中的映射表,每个颜色通道应当有256个元素,而 mode表示所输出的颜色模式,同样的,''L''表示灰度,''1''表示二值图模式。

可见,转换过程的关键在于设计映射表,如果只是需要一个简单的箝位值,可以将table中高于或低于箝位值的元素分别设为1与0。当然,由于这里的table并没有什么特殊要求,所以可以通过对元素的特殊设定实现(0, 255)范围内,任意需要的一对一映射关系。

示例代码如下:

import Image # load a color image im = Image.open(''fun.jpg'') # convert to grey level image Lim = im.convert(''L'') Lim.save(''fun_Level.jpg'') # setup a converting table with constant threshold threshold = 80 table = [] for i in range(256): if i threshold: table.append(0) else: table.append(1) # convert to binary image by the table bim = Lim.point(table, ''1'') bim.save(''fun_binary.jpg'')

IT部分通常要完成的任务相当繁重但支撑这些工作的资源却很少,这已经成为公开的秘密。任何承诺提高编码效率、降低软件总成本的IT解决方案都应该进行 周到的考虑。Python图像处理所具有的一个显著优势就是可以在企业的软件创建和维护阶段节约大量资金,而这两个阶段的软件成本占到了软件整个生命周期中总成本 的50%到95%。

Python清晰可读的语法使得软件代码具有异乎寻常的易读性,甚至对那些不是最初接触和开发原始项目的程序员都 能具有这样的强烈感觉。虽然某些程序员反对在Python代码中大量使用空格。

不过,几乎人人都承认Python图像处理的可读性远胜于C或者Java,后两 者都采用了专门的字符标记代码块结构、循环、函数以及其他编程结构的开始和结束。提倡Python的人还宣称,采用这些字符可能会产生显著的编程风格差 异,使得那些负责维护代码的人遭遇代码可读性方面的困难。转载


分享题目:图像白化python函数,Python函数图像
地址分享:http://abwzjs.com/article/dsijoeo.html